The generator matrix

 1  0  0  1  1  1  X  1  1  X  1  0  0  1  1  1  0  1  1  0  1  1  0  0  1  1  0  0  X  X  X  X  0  X  X  0  1  1  0  1  1  X  1  1  0  1  1  X  1  1  0  1  1  X  1  1  X  0  0  0  0  1  1  X  1  1  1  X  1  1  X  X  0  1  X  1  1  1  1  1
 0  1  0  0  1 X+1  1  0  1  1 X+1  1  0  0  X X+1  1  X X+1  1  X  1  1  X  X  1  1  X  1  1  1  1  1  1  1  1  0 X+1  1  0 X+1  1  X  1  1  X  1  1  0 X+1  1  X  1  1  X  1  1  1  1  1  1  0 X+1  1  X  X  0  0  X  0  0  0  X  X  0  0  1 X+1  0  0
 0  0  1  1  1  0  1  X X+1 X+1  X  X  1 X+1  X X+1 X+1  0  1  1  1  X  0  1 X+1  0  X  1  1 X+1  1  1 X+1 X+1 X+1  1  0  0  0  X  X  X  X  X  X  0  0  0  0  0  X  0  0  X  0  0  X X+1 X+1  1  1  X  X  0  1  1  0  1 X+1  X  1  1  0 X+1  1  X  1  1  0  0
 0  0  0  X  0  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  0  X  X  X  0  X  X  X  0  0  X  X  0  X  X  0  0  0  X  X  X  0  X  X  0  0  0  X  X  X  X  X  X  X  0  0  0  0  X  X  0  0  0  0  0  X  X  X  X  X  0  X  0  0  0  0  0  0  0  0
 0  0  0  0  X  X  0  X  0  X  0  X  X  X  X  0  0  0  X  X  0  0  0  0  X  X  X  X  X  0  X  0  X  0  X  0  X  0  X  0  X  0  0  X  0  X  0  X  X  0  0  X  0  0  0  X  X  0  X  0  X  0  X  X  X  0  0  X  X  X  X  0  X  0  0  X  0  X  X  0

generates a code of length 80 over Z2[X]/(X^2) who�s minimum homogenous weight is 76.

Homogenous weight enumerator: w(x)=1x^0+23x^76+52x^77+26x^78+16x^79+39x^80+32x^81+22x^82+16x^83+8x^85+10x^86+1x^92+4x^93+4x^94+2x^106

The gray image is a linear code over GF(2) with n=160, k=8 and d=76.
This code was found by Heurico 1.16 in 0.102 seconds.